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ABSTRACT 

The development of reliable first principle models that totally 
describe the dynamic behaviour of nonlinear systems is a difficult 
and time-consuming task. This poses a major challenge in the 
development of nonlinear model-based controllers for industrial 
processes. Hence, an alternative approach which involves the use of 
artificial neural network (ANN) models for real-time predictive 
control of a cascaded two tank system housed in our laboratory is 
explored in this research work. To achieve this, the tank process 
was excited by well-designed input signals within a specified range 
to obtain real-time input-output data at a sampling time of 2s. The 
datasets obtained were used to fit recurrent neural network (RNN) 
and feedforward neural network (FFNN) models for the process. 
Thereafter, the models were used in the design of predictive 
controllers. The designed controllers were compiled and deployed 
to an Arduino microcontroller interfaced with the process to 
achieve real-time control. Validation results showed both models 

have good fits. The closed loop experimental results also showed 
good setpoint tracking performance for both controllers. 

 
Keywords: Recurrent neural network, feedforward neural 
network, plant-model mismatch, Real-time control. 

1. INTRODUCTION 

Model predictive control (MPC) has become the advanced 
control method of choice in the process industries. This is largely 
because it has proven to be effective in handling processes which 
are somewhat difficult for classical controllers such as multivariable 
systems and systems which exhibit complex dynamics such as large 
time delays, non-minimum phase behaviour and input 
multiplicities. 

Most industrial implementations of MPC utilize a linear 
model for prediction. Linear MPCs usually give satisfactory 
performance when it is desired to keep the controlled variable at a 
constant setpoint and the control problem is a regulatory one. For 
processes which are required to operate at different operating 
regimes or which the nonlinearities are very severe even in the 
neighbourhood of a single operating point, MPCs which make use 
of nonlinear prediction models give significantly better control 
performance (Bamidele, 2016). 

The synthesis of a nonlinear model is however a crucial step 
in the design of any nonlinear model predictive control (NMPC) 
algorithm. Nonlinear models commonly used can be broadly 
classified either as first principle (white-box) models or empirical 
(black-box) models. First principle models give accurate 
predictions over the entire operating range of a system but 
development of these types of models is time-consuming and can be 
very difficult or impossible for some complex processes. In such 
cases, empirical modelling can be useful in that it requires no 
inherent knowledge of the system dynamics, given that sufficient 
input-output data is available. 

Various types of empirical models which have been used in 
NMPC algorithms include Volterra models (Maner, 1996), 
polynomial autoregressive moving average model with exogenous 
inputs – polynomial ARMAX (Sriniwas and Arkun, 1997), 
Hammerstein and Weiner models (Chu and Seborg, 1994; Dumont 
et al., 1994), Weiner-Laguerre models (Mahmoodi et al., 2009) and 
artificial neural networks (Su and McAvoy, 1997). Amongst all the 
aforementioned empirical model types, artificial neural networks 
(ANN) have earned the reputation of being a powerful data-driven 
and flexible computational tool having the capability of capturing 
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nonlinear and complex underlying characteristics of any process 
with a high degree of accuracy given that the input and output 
values of such a process have finite values. The use of ANNs for time 
series modelling and system identification is prevalent in the 
research community (Narendra and Parasarathy, 1990; 1992; 
Kuschewski, 1993). Based on architecture, neural networks can be 
broadly classified as either feedforward or recurrent. Both network 
types were utilized in this research work. 

Despite the improved prediction capability associated with 
the use of highly accurate nonlinear empirical models, in real-life 
processes, plant-model mismatch arising from unmeasured 
disturbances, sensor noise, and/or unmodelled dynamics is an 
inevitable occurrence. This can cause severe degradation in the 
performance of a predictive controller. Though recurrent neural 
networks (RNN) possess an output error structure that can 
compensate for mismatches up to a certain extent, steady-state 
offsets have been observed to exist when feedforward neural 
network (FFNN) models are used in conventional MPC schemes. 
(Chu et al., 2003). 

To combat this problem, several methods have been proposed. 
The most widely used approach is to update the model prediction 
using an output feedback error generated by comparing the 
predicted process output with the measured process output. The 
error term is assumed to be constant throughout the prediction 
horizon. Due to the fact that this technique was first implemented 
in the dynamic matrix control (DMC) algorithm, it is often called 
the “DMC-like offset correcting scheme”. This scheme is however 
only capable of eliminating steady-state offsets in cases of mild 
plant-model mismatch (Tian et al., 2014; Sobowale, 2019). 

Another simple yet novel approach to alleviate the mismatch 
problem is that proposed by Tian et al. This technique exhibits a 
high degree of robustness and has produced excellent results in 
some simulation studies (Tian et al., 2014; Sobowale, 2019). Further 
research (Sobowale, 2019) has however shown that it causes 
amplification of measurement noise leading to undesirable 
sustained oscillatory responses. This makes it quite unsuitable for 
real-time control. Plant-model mismatch problems in NMPC 
algorithms can also be tackled using a parameter adaptation 
technique (Huberman and Lumer, 1990; Al Seyab, 2006; Bamimore, 
2016), an offset-correcting scheme which these researchers 
(Bamimore, 2016; Sobowale, 2019; Kehinde-Abajo, 2019) have 
shown to produce impressive setpoint tracking results in the 
presence of unmeasured disturbances, measurement noise and 
uncertainties in model parameters. 

In this research paper, FFNN and RNN models were utilized 
in NMPC algorithms with parameter adaptation technique for the 
real-time control of a cascaded two-tank system. The rest of the 
paper is organized as follows: the theoretical framework is 
developed in section 2. The results and discussion of the servo 
problem are displayed in section 3 while the conclusions are given 
in section 4. 

2. THEORETICAL FRAMEWORK 

2.1. Problem Statement 

 Consider the laboratory scale cascaded two tank process, 
specifically designed by our group for process control studies. It has 
two level sensors, a DC pump and an electronically controlled valve. 
This system is interfaced with the computer via an Arduino micro 
controller board. The process is a 2 × 2 system having the pump 
flow rate and valve opening as manipulated variables and the 
heights of water in tanks 1 and 2 as the controlled variables. A 
simplified schematic of the process is shown in Figure 1. There are 
three different functional levels for this experimental system. The 
first level is known as the Plant and Field Instrument Layer, the 
second level is the Data Acquisition System Layer and the third level 

is the Supervisory Computer System Layer. The overall system 
architecture of the pilot plant is shown in Plate 1 of the Appendix. 

The control problem in this process is to regulate the levels of 
water inside the two tanks at their setpoints using an ANN based 
NMPC controller. 

Consider that the dynamics of water levels in the two tanks 
can be described by the nonlinear auto-regressive (NARX) model: 

 

𝑦𝑚(𝑘 + 1) = 𝑓[𝑦(𝑘), … , 𝑦(𝑘 − 𝑛𝑦 + 1), 𝑢(𝑘), … , 𝑢(𝑘 −

𝑛𝑢 + 1)]     (1) 
 
were 𝑘 stands for the sampling time, the function f(.) 

represents 𝑚𝑦-dimensional nonlinear vector mapping of the plant’s 

model, while 𝑢(𝑘) ∈ ℝ𝑚𝑢 , 𝑦(𝑘) ∈ ℝ𝑚𝑦  and 𝑦𝑚(𝑘) ∈ ℝ𝑚𝑦  are the 
plant’s manipulated inputs and outputs, and model prediction 
respectively; whereas 𝑛𝑦 and 𝑛𝑢 refer to the maximum lags in the 
process output and input respectively. 

 

 
Figure 1: Experimental setup of cascaded two tank system 

 

In this study, the model structures assumed for (1) are 
feedforward neural network (FFNN) and the recurrent neural 
network (RNN). Using historical input-output data of the plant, a 
one-step ahead FFNN can be trained to represent the plant model 
(1). Thus, 

𝑦𝑚(𝑘 + 1) = Wo[𝑓ℎ{WIψ(k) + bI}] + bo (2) 
 
where 

ψ(k) = [𝑦(𝑘), … , 𝑦(𝑘 − 𝑛𝑦 + 1), 𝑢(𝑘), … , 𝑢(𝑘 − 𝑛𝑢 + 1)];  
 
Wo and WI represent the output and input weights 

respectively; bo and bI represent the output and input biases 
respectively. The function 𝑓ℎ(. ) stands for the activation function 
for which the universal approximation theorem holds (Cybenko, 
1989; Hornik, 1991), selected in this study as: 

 

𝑓ℎ(x) =
2

(1+e−2x)
− 1    (3) 
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By using Equation 2 recursively, the multi-step-ahead 
prediction can be obtained thus 

 
𝑦𝑚(𝑘 + 𝑖) = Wo[𝑓ℎ{WIψ(k + i − 1) + bI}] + bo  (4) 
 
Alternatively, an internally recurrent neural network called 

‘Elman’ network can be trained to represent the plant model. 
Following the same procedure as above, a multistep-ahead 
prediction model is obtained as: 

 
ℎ(𝑘 + 𝑖) = 𝑓ℎ[𝑊𝐼𝑢(𝑘 + 𝑖 − 1) + 𝑊𝐿ℎ(𝑘 + 𝑖 − 1) + 𝑏𝐼]  (5) 

 

𝑦𝑚(𝑘 + 𝑖) = 𝑊𝑜ℎ(𝑘 + 𝑖) + 𝑏𝑜      (6) 
 
where ℎ(𝑘) is the output of the hidden layer and WL stands 

for hidden layer weight. 

2.2. NMPC problem formulation 

The NMPC control problem is then formulated as finding the 
incremental inputs over the control horizon, i.e., Δ𝑢(𝑘 +
𝑖), … , Δ𝑢(𝑘 + 𝑁𝑐 − 1), which minimize the cost function: 

 
 

𝐽 = min {∑ ‖𝑟(𝑘 + 𝑖) − 𝑦𝑚(𝑘 + 𝑖)‖𝑤y
2 + ∑ ‖Δ𝑢(𝑘 + 𝑖)‖𝑤Δ𝑢

2𝑁𝑐−1
𝑖=0

𝑁𝑝

𝑖=1
}                   (7a)  

  

and subject to the constraints on process input rates, inputs and 
outputs: 
 

∆𝑢𝑚𝑖𝑛 ≤ ∆𝑢(𝑘 + 𝑖) ≤ ∆𝑢𝑚𝑎𝑥  𝑖 = 0, … , 𝑁𝑐 − 1 (7b) 

 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘 + 𝑖) ≤ 𝑢𝑚𝑎𝑥    𝑖 = 0, … , 𝑁𝑐 − 1  (7c) 

 

𝑦𝑚𝑖𝑛 ≤ 𝑦𝑚(𝑘 + 𝑖) ≤ 𝑦𝑚𝑎𝑥    𝑖 = 1, … , 𝑁𝑝 (7d) 

 

where 𝑁𝑝 and 𝑁𝑐  are the prediction and control horizon 

respectively; 𝑤𝑦 and 𝑤Δ𝑢  are the output and input rate weighing 

matrices respectively; 𝑟 is the setpoint trajectory. 

3. METHODOLOGY 

3.1. Data Collection and ANN models Identification 

For the purpose of collecting data for ANN models 
identification, the two inputs (U1 and U2) to the experimental tank 
process were excited by random signals in the range [80 160] and 
[0.1 1] respectively. Switching time of 150s and 200s were used for 
inputs U_(1 )and U_2, respectively, as these were the approximate 
settling times of the two levels. A low pass filter was used to reduce 
the effect of the noise during the data collection. 15000 input-
output data set were collected at a sampling rate of 2 seconds. The 
2 seconds sampling time was small enough to capture the 
nonlinearities in the data and prevent aliasing whilst offering a 
burden not too difficult for our computing systems to handle. 
Figure 2 shows a portion of the data samples obtained. After a series 
of trials and errors, the FFNN model was designed using a 8-10-10-
2 configuration, that is, eight neurons in the input layer, 10 neurons 
in each of the two hidden layers and 2 neurons in the output layer. 
Further increment in neurons was observed not to result in any 
appreciable increase in model prediction accuracy. Using same 
procedure, the RNN was designed using a 2-8-2 configuration, that 
is, two neurons in the input layer, 8 neurons in the hidden layer and 
2 neurons in the output layer. Less number of neurons was used in 
RNN because it usually requires fewer neurons to achieve an 
identical modelling accuracy as FFNN. The two networks were also   
trained using the Bayesian Regularization algorithm to minimize 
the Mean Square Error (MSE) between the predicted and actual 
outputs. 

 

 
Figure 2: Input-Output data from the experimental system: (a) Height of tank 1 (ℎ1)  

(b) Height of tank 2 (ℎ2) (c) Pump flowrate (𝑈1) (d) Actuated valve opening (𝑈2) 

4. RESULTS AND DISCUSSION 

4.1. Trained ANN models validation results 

For the purpose of ascertaining the fidelity of the trained ANN 
models, some fractions of the data collected during process 
identification were used for model validation. After model 
validation, the R^2 values obtained were 0.80258 and 0.80759 for 
the FFNN and RNN models, respectively. In addition, the MSE 
values obtained for the FFNN and RNN models are 25.4187 and 
23.9598, respectively. These values revealed that the identified 
models have good fits. They also showed that the two identified 
ANN models have a comparable performance and accurate enough 
for predictive controller design. 

4.2. Closed-loop experimental results 

The trained ANN models were later used for predictive 
controllers design. The designed predictive controllers were 
deployed for the control of the cascaded-tank process in real-time. 
The servo performance of the designed controllers were observed 
and evaluated after introduction of the following setpoint changes 
depicted in Eqns (8a) and (b). Graphical presentations of variations 
of the controlled and manipulated variables with time for the 
𝐹𝐹𝑁𝑁 and 𝑅𝑁𝑁 model based predictive controllers are shown in 
Figures 3 and 4 respectively. 
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Figure 1.3: Evolution of controlled and manipulated variables with time (𝐹𝐹𝑁𝑁 − 𝑁𝑀𝑃𝐶) : Height of tank 1 (ℎ1)  (b) Height of tank 2 (ℎ2)    (c) Pump 

flowrate (𝑈1)     (d) Actuated valve opening (𝑈2) 

 
Figure 1.4: Evolution of controlled and manipulated variables with time (𝑅𝑁𝑁 − 𝑁𝑀𝑃𝐶):  Height of tank 1 (ℎ1)  (b) Height of tank 2 (ℎ2) (c) Pump 

flowrate (𝑈1) (d) Actuated valve opening (𝑈2) 

 

ℎ1𝑠𝑒𝑡
= {

17, 0 ≤ 𝑡 ≤ 400
12, 400 < 𝑡 ≤ 800
20, 800 < 𝑡 ≤ 1200

                (8𝑎) 

ℎ2𝑠𝑒𝑡
= {

17, 0 ≤ 𝑡 ≤ 400
21, 400 < 𝑡 ≤ 800
13, 800 < 𝑡 ≤ 1200

               (8𝑏)
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These results revealed that both FFNN-NMPC and RNN-
NMPC give good and comparable set-point tracking with small 
overshoots and undershoots. However, the control signal 𝑢2 in 
FFNN-NMPC is a little noisy which is due to small weight used on 
𝑢2. 

The integral absolute error (𝐼𝐴𝐸) between the process 
outputs and setpoints which serves as a criterion for assessment of 
controller performance is summarized in Table 1. These showed 
FFNN-NMPC having slightly lower IAE values than RNN-NMPC. 
The NMPC tuning parameters are summarized in Table 2. 

 
Table 1: 𝐼𝐴𝐸 values in setpoint tracking for both controllers  

 ℎ1𝑠𝑒𝑡 −  ℎ1 ℎ2𝑠𝑒𝑡 −  ℎ2 

𝐹𝐹𝑁𝑁-𝑁𝑀𝑃𝐶 1239.5 1459.9 
𝑅𝑁𝑁-𝑁𝑀𝑃𝐶 1477.0 1635.9 

   
Table 2: Predictive Controllers tuning parameters 

 FFNN- 
NMPC 

RNN-NMPC 

Sampling time (𝑠) 2 2 
Prediction horizon (𝑁𝑝) 20 20 

Control horizon (𝑁𝑢) 1 2 
Input 𝑈1 [min, max] (𝑐𝑚3/𝑠) [80, 170] [80,170] 
Input 𝑈2 [min, max] [0.1, 1.0] [0.1, 1.0] 
Input rate (∆𝑈1) [min, max] [−20, 20] [−20, 20] 
Input rate (∆𝑈2)  [min, max] [−0.4, 0.4] [−0.1, 0.1] 
Output ℎ1 [min, max] [0, 30] [0, 30] 
Output ℎ2 [min, max] [0, 30] [0, 30] 
Weights 

Output 𝑊𝑦 diag(10, 10) diag[100,100] 

Input rate 𝑊∆𝑢 diag(0.001, 0.06)] diag[0.5, 200] 

 

5. CONCLUSION 

In this research work, two types of artificial neural network 
models, namely feedforward and recurrent neural networks models 
have been identified to describe the dynamic behaviour of the 
cascaded two tanks process using real-life input-output data 
collected from the tank. Thereafter, Nonlinear model predictive 
controller were designed from the identified ANN models and used 
for the direct digital control of the tank in real-time. Parameter 
adaptation method was used to handle the issue of plant-model 
mismatch in the tank’s levels responses.  

As shown by the results of validation experiment, both FFNN 
and RNN show great potentials in modelling dynamic systems. 
Also, as observed in the good set-point tracking results obtained 
from real-time implementation on the cascaded two tank system, 
both FFNN-NMPC and RNN-NMPC will find application in the 
process industries where plant’s history data are available and it is 
expensive in building a model from first principle. 

It is hope that the newly designed cascaded two-tank process 
will be used extensively for research and educational training 
purposes of both undergraduate and post-graduate students in the 
area of process systems engineering. 
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Appendix 

 

 
Plate 1: Experimental Setup of cascaded two tank system 

 
Dynamic models of the tank system 
 
The dynamics of the levels of water inside the two tanks are 

described by the first principle models: 
 

ℎ1̇ =
1

𝑎𝑤
(𝑈1 − 𝑈2𝑆𝑝√2𝑔ℎ1 − 𝐶2𝑆𝑝√2𝑔ℎ1)                     

        

ℎ2̇ =
𝐻

𝑏𝑤ℎ2+𝑐𝑤𝐻
(𝑈2𝑆𝑝√2𝑔ℎ1 − 𝐶2𝑆𝑝√2𝑔ℎ1 − 𝐶3𝑆𝑝√2𝑔ℎ2)  

 
Model Parameters 
 

𝑤 = 3.5𝑐𝑚, 𝑎 = 25𝑐𝑚, 𝑏 = 34.5𝑐𝑚,  𝑆𝑝 = 1.267𝑐𝑚2, 𝐻 = 35𝑐𝑚, 

𝑔 = 981𝑐𝑚2𝑠−1, 
 

𝐶2 = 0.4347, 𝐶3 = 0.7347 
 
Nominal Operating Points 
 

𝑈1 = 170𝑐𝑚3𝑠−1, 𝑈2 = 0.3, ℎ1 = 17𝑐𝑚, ℎ2 = 17𝑐𝑚 
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