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In this study, we addressed the optimization problem of fair network resource allocation in the 
context of cognitive radio network radio frequency energy harvesting (CRN-RF-EH) networks to 
ensure unbiased distribution of throughput capacity among users in the system. To achieve this 
goal, we formulated a non-convex optimization problem, specifically a max-min resource 
allocation problem. To make it more manageable, we transformed this non-convex problem into 
a convex optimization one by introducing auxiliary variables. We demonstrated that the 
transformed optimization problem is concave. We maximize the CRN-RF-EH worst-case user 
throughput capacity through the proposed joint optimal time and power allocation (JOTPA) 
scheme under the prevailing CRN-RF-EH constraints. Through simulation results, we consistently 
observed superior performance of our proposed solution compared to the conventional biased-
randomized time optimal power allocation (BRTOPA) scheme. It is important to note that our 
analysis of the radio resource allocation fairness in CRN-RF-EH assumes perfect channel state 
information (CSI) among all users. In future research, exploring the impact of uncertainty arising 
from imperfect CSI among users in CRN-RF-EH would be an interesting direction. 
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The rapid expansion of wireless communication networks, 
driven by increasing demand for connectivity and diverse 
applications, has heightened global energy consumption (Wang & 
Lee, 2022). For the next-generational wireless networks (NGWNs) 
to be sustainable, various green energy sources, such as solar 
energy, wind energy, geothermal energy, radio frequency (RF) 
energy, etc. are actively being proposed as alternatives to fossil 
fuel energy source replacements for these wireless communication 
networks (Gholikhani et al., 2020). The RF energy harvester can 
convert a wide spectrum of radio frequency energy into usable 
electrical energy. The RF energy harvesting networks can be 
implemented using two different architectures, namely: the 
harvest-use architecture and harvest-store-use architecture. The 
energy harvested in the harvest-use model is used directly by the 
communication device without any form of energy storage. In the 
harvest-store-use architecture, the energy harvested is stored in 
batteries or super-capacitors, this stored harvested energy is made 
available to the communication node and used when it is required 
for its functional applications. The operational protocols of RF 
harvesting networks are generally time-slotted. For a complete 
communication time frame, a time slot is given for wireless power 
transfer (WPT) (Zhang et al., 2019) and wireless information 
transfer (WIT), however, when both WET and WIT take place 
concurrently this is referred to as Simultaneous wireless 
information and power transfer (SWIPT) (Wu et al., 2022).  

Cognitive radio (CR) technology is another major disruptive 
technology proposed for NGWNs. Cognitive radio networks (CRN) 
have a huge potential to improve poor radio spectra utilization 
and address the radio spectra scarcity challenges that are currently 
faced in the wireless communications industry. The CRN is a 
secondary user (SU) networks that seek to utilize the licensed radio 
spectrum of the primary users (PU) network without causing 
harmful interference to the PUs in the primary network. Three 
different architectures have been exploited to achieve the radio 
spectrum access goals of CRN. These are the overlay, interweave 
and underlay spectra access models (Zakariya et al., 2020).  The 

underlay spectrum access model is regarded as the most efficient 
in terms of spectra utilization (Zakariya et al., 2020).  

The integration of CR and RF-EH technologies provides 
tremendous capability of access to "free" spectra and energy. These 
capabilities have proved to be of interest to both wireless 
communication researchers in academia and the industry (Singh 
et al., 2020). The underlay spectrum access provides the best 
spectrum access paradigm for CRN-RF-EH. The SU in the underlay 
spectrum access mode in the CRN-RF-EH will utilize all its 
harvested energy for its sole radio transmission purpose. The SU is 
not engaged in spending any fraction of its harvested RF energy 
on PUs spectrum sensing in the case of inter-weave spectrum 
access mode or cooperative relaying for the PU, as in the case of 
the overlay spectrum access mode. Hence, a lot of research 
interests have developed for the underlay CRN-RF-EH. 

 In low-powered and spectra-constrained wireless 
communication networks, resource starvation for wireless 
communication nodes located at the far-edge of the 
communication network can readily occur. Ignoring the radio 
resource allocation fairness of these nodes can result in 
significantly reduced throughput capacity for some cell-edge user 
nodes with poor channel conditions. Various resource allocation 
strategies such as max-min fairness, round-robin fairness, 
harmonic mean rate fairness and proportional fairness exist in the 
literature (Liu & Zhang, 2020). A proportional fairness allocation 
strategy can possibly deny data transmission to some users in the 
CRN-RF-EH with high interfering channel gains to the PU or 
inappropriate channel gain conditions. This wireless network 
scenario can make the proportional fair allocation strategy not 
very attractive to employ in this CRN-RF-EH. Hence, we consider 
another fairness criterion: max-min fairness. This allocates to each 
user in the CRN-RF-EH a reasonable practical capacity rate. The 
max-min fairness allocation usually provides the highest resource 
allocation and usage to the user who is most resource-starved (Lee 
& Shin, 2023). Our goal in this paper is to jointly optimize the 
allocated transmit time and allocated transmission power in the 
CRN-RF-EH so that, under the constraints of energy causality, 
communication frame duration, maximum power, and allowable 
interference of the PU networks, the worst-case user capacity of 
the network is maximized.  
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This paper tackles the challenge of radio resource allocation 
fairness in a multi-user that specifically allows multi-user in the 
CRN-RF-EH to have uniform access to the CRN-RF-EH networks’ 
transmission resources, irrespective of the multi-user’s wireless 
radio environment or conditions.  The paper fills this gap by 
presenting and exploring the max-min optimization framework for 
multi-user in a low energy constrained CRN-RF-EH network, while 
optimizing the transmission time and power of the nodes in the 
CRN-RF-EH Network.  

The radio resource management (RRM) function is a core 
aspect of wireless communication networks. Nevertheless, the 
investigation into the resource allocation fairness issues in CRN-
EF-EH has received little attention.  This work investigates the 
joint transmission time and transmits power allocation strategy in 
CRN-RF-EH with the aim to maximize the worst-case user’ 
capacity, such that the user’s starvation does not occur and the 
interference constraint threshold of the primary user in the 
primary networks is not violated. This is especially crucial for the 
wireless communication networks with finite energy capacity in a 
low-powered wireless communication network where resource 
starvation can readily occur. The max-min fairness optimization 
approach helps to solve the problem of providing the same 
maximum QoS for the individual user irrespective of their 
challenge propagation environment, thus this optimizes for the 
weakest user network throughput. Maxi-min optimization ensures 
that there is no resource starvation for the network resource user 
(Raeisi-Varzaneh et al, 2023).  In this paper, the worst-case user 
capacity maximization investigation is formulated as max-min 
optimization problem OP1 through the joint optimization of the 
transmit power and transmit time.  The problem OP1 is observed 
to be a non-convex optimization problem. First, we introduce a 
slack variable and a new auxiliary variable, we transformed OP1 
into an optimization problem OP2.  Next, we observed that due to 
the coupled variables in some of the constraints of OP2, an 
intermediate variable is introduced to transform OP2 to a standard 
convex optimization problem, OP3. For the maximization of the 
worst-case user capacity, a joint optimal time and power allocation 
(JOTPA) scheme is proposed. We showed that the global optimal 
solution exists since the optimization problem as formulated is a 
standard convex problem. Thus, the problem can be solved 
efficiently by using any standard convex optimization technique. 
Furthermore, using the commercial CONOPT solver package 
implemented in the MATLAB environment, the standard convex 
optimization problem is solved to obtain the optimal values of the 
decision variables, transit time and power allocation for the worst-
case user capacity maximization. The results obtained for the 
numerical simulations of the JOTPA strategy are compared with 
the baseline biased-randomized time optimal power allocation 
(BRTOPA) scheme. 

The rest of the paper is organized as follows: Section 2 
provides a related literature review on CRN-RF-EH. Section 3 
introduces the system network framework for the proposed joint 
time and power resources allocation optimization problem with 
fairness considerations of the CRN-RF-EH. In Section 4, the 
mathematical model of the problem is formulated and then solved 
using CONOPT optimization package. Furthermore, Section 6 
presents and discusses the performance evaluation of the proposed 
scheme. Finally, Section 7 concludes the paper. 

 

Xu et al. (2018) investigated the energy maximization 
problem for multiple 𝑆𝑈𝑠 in multi-channel energy harvesting 
networks through the joint allocation of channel and transmission 
power for the 𝑆𝑈𝑠 nodes. The investigated energy maximization 
problem formulation led to a non-convex mixed-integer non-linear 
fractional programming (MINLFP) problem. To obtain the solution 
to the non-convex energy efficient optimization problem, the 
binary constraint of channel selection is relaxed and the fractional 
objective function is transformed into multiple objective functions 
with the help of a parametric variable and solved using the 
Dinkelbach method. Finally, the numerical results obtained are 

compared to the reference equal power allocation scheme. The 
proposed algorithm significantly improves the energy efficiency of 
the CRN-RF-EH compared to the equal power allocation algorithm.  
While this work tackles the issue of network throughput capacity 
maximization, however the network resource allocation fairness is 
not addressed.  

Hu et al. (2017), in their work, investigated the optimal max-
min fairness resource allocation for wideband cognitive radio with 
energy harvesting capability. The system model for the wide-band 
network is made of several𝑃𝑈𝑠, a single cognitive base station 
(CBS) and several 𝑆𝑈𝑠 with the CBS operating in the simultaneous 
wireless information and power transfer (SWIPT) mode. The CBS 
first senses the 𝑃𝑈′𝑠 spectrum to ascertain the status of the 𝑃𝑈′𝑠 
channels. When the 𝑃𝑈′𝑠 channel is vacant, the CBS engages in 
SWIPT with the 𝑆𝑈𝑠 and energy harvesting Receivers (EHRs). To 
address the resource allocation issues of the narrow-band channel 
allocations to the SUs, the worst-case user capacity maximization 
was proposed, but the wide-band sensing of the 𝑃𝑈𝑠 spectrum by 
the single CBS node may limit the performance of the network.   

Jiang et al. (2017) developed a cooperative sensing 
framework that jointly optimizes the spectrum sensing time and 
energy harvesting time to maximize the spectrum access 
probability for the CRN-RF-EH. The sum throughput maximization 
for multiple access cognitive radio networks with cooperative 
spectrum sensing and energy harvesting is investigated in (Biswas 
et al., 2019). However, cognitive radio cooperative sensing can 
incur a variety of cooperation overheads. This may deteriorate the 
overall performance of the CRN-RF-EH.  

Cheng et al. (2017) considered proportional fairness in 
cognitive wireless-powered communication networks (CWPCN). 
The CWPCN accesses the licensed spectrum based on the underlay 
spectrum sharing framework. The CWPCN is based on the time 
division multiple access (TDMA) transmission scheme and harvest-
then-transmit protocol. The users far away from the hybrid access 
point (HAP) achieve low throughput, as they suffer from both low 
harvested energy and high energy consumption for transmission. 
Hence, this unfairness issue is referred to as the doubly near-far 
phenomenon. To address this problem in (Cheng et al., 2017), the 
authors adopted the bandwidth utility maximization framework, 
based on proportional fairness. Simulation results showed that the 
proposed scheme outperformed the sum capacity scheme in terms 
of fairness metric and similarly provided a trade-off between 
fairness and throughput. 

Kalamkar et al. (2016) present an overlay cognitive radio 
network, where the cognitive nodes are powered by a dedicated 
RF energy source from the HAP. To maximize the sum throughput 
capacity of the secondary network in (Kalamkar et al., 2016), the 
sum throughput optimal resource allocation (STORA) scheme that 
jointly selects the optimal 𝑆𝑈 for cooperative relaying, energy 
harvesting time and transmission power allocation is developed. 
However, as the STORA scheme prioritizes sum throughput, the 
STORA scheme may neglect 𝑆𝑈𝑠 with poor channel gains, resulting 
in poor fairness performance. To address this challenge, the 
authors considered three resource allocation schemes: equal time 
allocation (ETA), minimum throughput maximization (MTM) and 
proportional time allocation. Simulation results demonstrate a 
trade-off between sum throughput and fairness. 

 

We consider cognitive radio networks with radio frequency 
energy harvesting (CRN-RF-EH) capabilities. The CRN-RF-EH 
network is based on the undelay spectrum access and TDMA 
model. Our model design is based on the justification that 
underlay spectrum access architecture is not plagued with 
spectrum sensing overhead, high latency for secondary users and 
the requirement explicit cooperation primary users. Furthermore, 
the TDMA in our model justifiably maximizes all usable bandwidth 
with no need bandwidth wastage on guard bands and reduces the 
complexity of frequency assignment in wireless cellular 
communication networks. These are widely adopted wireless 
communication networks industry standards (Cheng et al., 2017), 
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hence the motivation of the adoption of these models in this paper.   
A multi-user CRN-RF-EH with an underlay spectrum access 
architecture is considered. The CRN-RF-EH consists of multi-user 
equipped energy harvesting modules as shown in Figure. 1 and 
Figure. 2. The primary user networks consist of a single 𝑃𝑇 and 𝑃𝑅 
. The 𝑃𝑇 is constantly transmitting within the primary user 
networks. The CRN-RF-EH has the side information of the 
maximum interference threshold of the primary networks. The 
primary network has the licensed spectrum usage right. However, 
it can allow the secondary network to access the spectrum using 
the underlay access mode. Thus, the network performance of the 
primary networks is not degraded by transmission activities of the 
secondary networks. The secondary user network consists of 𝑖௧௛ 
transmitter and 𝑖௧௛ receiver, where 𝑖௧௛  ∈ (1,2,3, ⋯ , 𝑀 − 1, 𝑀). Each 
𝑆𝑈 node is equipped with a single antenna. Through underlay 
spectrum access and RF energy harvesting, the secondary users, 
have access to both "free" spectrum and "free" energy for their 
transmissions.  

The transmitting 𝑆𝑈 operates on harvest-store-use. 𝑆𝑈s are 
equipped with super-capacitors for harvested energy storage. A 
complete communication frame duration,𝑇ி , of the CRN-RF-EH is 
divided into 𝑀 slots, where 𝑀 is the number of secondary users in 
the CRN-RF-EH. Each complete communication slot duration 𝑇 is 
divided into two sub-slots. The sub-slot at the beginning of each 
communication slot duration is the 𝑆𝑈 energy harvesting time slot, 
while the remaining or second sub-slot of the communication slot 
duration is the 𝑆𝑈 information transmission time slot. The 𝑆𝑈s 
cannot transmit their information while they are harvesting 
energy from the 𝑃𝑈 transmitter and similarly the 𝑆𝑈𝑠 cannot 
harvest energy from the 𝑃𝑈 transmitter, when they are 
transmitting their information.  However, 𝑆𝑈𝑠 located far from the 
𝑃𝑇 will experience higher distance-dependent path-loss 
attenuation than 𝑆𝑈𝑠 located near the 𝑃𝑇. This might lead to 
unfairness in resource access, whereby distant cell-edge users from 
the 𝑃𝑇 not only have less chance to harvest energy but may also 
have insufficient energy for their transmission when compared to 
𝑆𝑈𝑠 which are relatively closer to the 𝑃𝑇. Let the 𝑖௧௛ user be 
denoted by 𝑈௜, while the ith transmitter and the 𝑖௧௛ receiver are 
denoted by 𝑈ௌ்

௜  and 𝑈ௌோ
௜ , respectively. The energy harvesting 

channel gain between the 𝑃𝑇 and the 𝑈ௌ்
௜  is denoted as 𝑎௉்,ௌ்

௜  , 
similarly, the interference channel gain between the 𝑈ௌ்

௜  and the 
𝑈ௌோ

௜ is denoted by 𝑏௉்,ௌோ
௜ . The noises at both 𝑃𝑅 and 𝑈ௌோ

௜  are 
considered to be both independent and identically distributed 
(i.i.d.) circularly symmetric complex Gaussian with zero mean and 
variance of 𝜎ଶ. The network system models a dense urban city 
environment where there is no line of sight (NLOS) path.  Thus, 
all the channel links in the model experience both large-scale 
fading and small-scale fading. The 𝑈ௌ்

௜  node is powered by the 
harvested energy. The 𝑆𝑈௜ is a single antenna-equipped node that 
cannot transmit and receive simultaneously; thus, it operates in 
half-duplex mode. The CRN-RFEH system model adopts the 
harvest-then-transmit protocol. In the CRN-RF-EH, the frame 
duration of 𝑇ி is divided into M slots. A slot has a duration length 
𝑇. The 𝑖௧௛ user is assigned to the slot, 𝑆(𝑖) . Each user’s slot 
duration, 𝑇 is divided into two sub-slots. This is the energy 
harvesting time sub-slot and the information transfer time sub-slot. 
At the beginning of the 𝑆(𝑖) slot, the 𝑈ௌ்

௜  will have to harvest its 
energy from 𝑃𝑇′𝑠 RF signal before transmitting its data. This is 
referred to as the energy harvesting slot. The harvested energy can 
temporarily be stored in a super-capacitor, until the 𝑈ௌ்

௜  is ready 
to transmit its information or data to the 𝑈ௌோ

௜ . The super-capacitor 
is assumed to be fast charging and has infinite recharge cycles. In 
the CRN-RF-EH, we adopt a time division multiple access (TDMA) 
scheme, where each time block 𝑇 consists of two phases. The 𝑆𝑈𝑠 
transmit their information at orthogonal time slots. The energy 
harvested in the harvesting slot is consumed (Sharma, P. & Singh, 
A. K, (2023), at the end of each user’s network communication slot 
duration. Thus, energy harvested in a given slot cannot be used in 
another slot. The fame duration, 𝑇ி and slot structures are shown 
in Figure. 3. 

 
         Figure. 1: Energy harvesting 
 

 
 
       Figure. 2: Data transmitting 
 

 
Figure. 3: Time slot structure 

 

 

Various notations are employed in this work. Thus, for easier 
readability, a checklist of the useful notations employed in this 
manuscript is presented in Table 1. 

 

The 𝑃𝑇 from the primary network transmits constantly and 
provides a dedicated source of RF energy harvesting opportunity 
for the CRNRF-EN nodes. Each network communication 
duration,𝑇, slot starts with the 𝑈ௌ்

௜  , first harvesting its energy from 
the 𝑃𝑇’s signal transmission, for a given time duration of 𝑇 − 𝑡௜. 
The energy harvested 

By 𝑈ௌ்
௜  during the energy harvesting time 𝑇 − 𝑡௜ is 𝐸௜. Hence, 

𝐸௜  is defined in Equation 1, as: 

𝐸௜ = (𝑇 − 𝑡௜)𝜀௜𝑃௉்𝑎௉்,ௌ்
௜                                        (1) 

The 𝑃௉் indicates the transmission power of the primary user 
𝑃𝑇, 𝑎௉்,ௌ்

௜ is the channel gain between the 𝑃𝑇 and the 𝑈ௌ்
௜  , while 

𝜀௜ denotes the average energy harvesting efficiency of the 𝑈ௌ்
௜  , 

which henceforth will just be simply referred to as energy 
harvesting efficiency in rest part of the manuscript, where 𝜀௜  ∈ [0, 
1]. In our implemented harvest-store-use protocol, for simplicity, 
the storage time is ignored.  
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Table 1: Summary of important notations 
Notation  Description 

𝑅௜൫𝑡௜𝑃ௌ்
௜ ൯ Throughput capacity of the 𝑈௜  in the 𝑆𝑈′𝑠 

networks 
𝑃ௌ்

௜  Transmission power of the 𝑈ௌ்
௜  

𝑎௉்,ௌ்
௜  Channel link gain between the 𝑃𝑇 and 𝑈ௌ்

௜  

𝑏௉்,ௌோ
௜  Interference channel link gain between the 𝑃𝑇 

and 𝑈ௌோ
௜  

𝑔ௌ்,௉ோ
௜  Channel link gain between the 𝑈ௌ்

௜  and 𝑃𝑇 

ℎௌ்,ௌோ
௜  Interference channel link gain between the 

𝑈ௌ்
௜  and the 𝑈ௌோ

௜  
𝐸௜  Harvested energy of the 𝑈ௌ்

௜  
𝐼௣ Interference threshold of the primary 

networks 
𝑃௉்  Constant transmission power of the 𝑃𝑇 
𝐿௢ Path loss 

𝑃௠௔௫ Maximum transmitting power threshold for 
secondary user 

𝜀௜ Energy harvesting efficiency of the 𝑈ௌ்
௜  

𝑈ௌ்
௜  The 𝑖௧௛  transmitter of the 𝑆𝑈 networks 

𝑈ௌோ
௜  The 𝑖௧௛  receiver of the 𝑆𝑈 networks 

𝑛௜ AWGN at the 𝑈ௌோ
௜  in the 𝑆𝑈 networks 

𝑇 Slot duration 
𝑇ி  Frame duration 
𝑡௜ Transmission time of the 𝑈ௌ்

௜  
𝜗௜ New intermediate variable of 𝑈௜  in the 𝑆𝑈′𝑠 

networks 
𝑁଴௜ Noise power at the 𝑈ௌோ

௜  
𝜎ଶ Rayleigh fading gain variance 

𝐼ௌோ
௜  Received noise from the 𝑃𝑇 at the 𝑖௧௛  user in 

𝑆𝑈 networks 
𝛤௜  Signal to interference plus noise ratio at the 

𝑖௧௛  user in the 𝑆𝑈 networks 
𝑥௣ Transmitted base-band signal of 𝑃𝑈 

𝑥௜ Transmitted base-band signals of 𝑈ௌ்
௜  

 

 

In the CRN-RF-EN, each 𝑈ௌ்
௜  starts the transmission of its data 

or information to 𝑈ௌோ
௜ , after its energy harvesting time. During the 

data transmission time, the transmission of 𝑈ௌ்
௜  to 𝑈ௌோ

௜  causes some 
interference to the 𝑃𝑅 in the primary user networks. Similarly, the 
transmission of 𝑃𝑇 to 𝑃𝑅 causes some interference to 𝑈ௌோ

௜  in the 
secondary user networks. However, the primary user network can 
allow the transmission activities as long the accumulative 
interference of all 𝑈ௌ்

௜  does not exceed the interference threshold 
limit of the primary user. The message received, 𝑚௜ at the 𝑈ௌோ

௜  
during the 𝑡௜ transmission time is denoted in Equation 2;  

𝑚௜ = ඥ𝑃௉்𝑎௉்,ௌோ
௜ 𝑥௣ + ට𝑃ௌ்

௜ ℎௌ்,ௌோ
௜ 𝑥௜ + 𝑛௜ , ∀𝑖                       (2)  

 where the transmission powers of PT and 𝑈ௌ்
௜  are given as 

𝑃௉்  and 𝑃ௌ்
௜ , respectively. The 𝑎௉்,ௌோ

௜  denote the interference 
between PT and 𝑈ௌோ

௜ . The information or data channel link gain 
from 𝑈ௌ்

௜  to 𝑈ௌோ
௜  is denoted by ℎௌ்,ௌோ

௜ . The base-band signals 
originating from the 𝑃𝑇 and 𝑈ௌ்

௜  are represented by 𝑥௣ and 𝑥௜, 
respectively, while the additive white Gaussian noise (AWGN) at 
𝑈ௌோ

௜  is denoted as 𝑛௜ . 

 

In this section, we present the mathematical model for the 
worst-case user capacity optimization problem for the CRN-RF-EH. 
The goal of the study is to optimize the throughput of the worst-
case users’ capacities in the CRN-RF-EH by optimally allocating 
jointly the transmission time and transmission power in the CRN-
RF-EH, under various peculiar constraints that are associated with 
the CRNRF-EH. 

 

 

The maximum achievable throughput of 𝑈௜ is negatively 
impacted by the continuous signal transmission of the PT. Thus, 
due to this continuous transmission of 𝑃𝑇, 𝑈ௌோ

௜  experiences 
constant interference from the𝑃𝑇. The received interference 𝐼ௌோ

௜  of 
the 𝑈ௌோ

௜  during the data transmission slot of the CRN-RF-EH is 
expressed in Equation 3: 

𝐼ௌோ
௜ =  𝑃௉்𝑎௉்,ௌோ

௜ , ∀𝑖                                               (3) 

The maximum achievable throughput of each user in the 
CRNRF-EH during the data transmission time or the maximum 
transmission rate 𝑅௜൫𝑡௜ , 𝑃ௌ்

௜ ൯ of the 𝑖௧௛ user with the transmission 
power 𝑃ௌ்

௜  and transmission time, 𝑡௜  can be calculated using 
Equations 4-6: 

𝑅௜൫𝑡௜ , 𝑃ௌ்
௜ ൯ = 𝑡௜ 𝑙𝑜𝑔ଶ ቆ1 +

𝑃ௌ்
௜ ℎௌ்,ௌோ

௜

𝑃௉்𝑎௉்,ௌோ
௜ + 𝑁଴௜

ቇ , ∀𝑖                        (5) 

 
𝑅௜൫𝑡௜ , 𝑃ௌ்

௜ ൯ = 𝑡௜ logଶ൫1 + Γ௜൯ , ∀𝑖                                (6) 
 
where Γ௜ is the signal-to-interference plus noise ratio (SINR) 

at the 𝑈ௌோ
௜ . The N0i denotes the noise power at the 𝑈ௌோ

௜ . The AWGN 
has a power spectra density (PSD) that is flat over all frequencies. 

 

Some important assumptions were made in this manuscript. 
The channel reciprocity assumption was employed. It is assumed 
that the channel links experience an independent quasi-static 
block fading channel, this implies that the channel remains static 
or unchanged in one time slot, but can change in the next time 
slot. To achieve the upper performance limit for our numerical 
simulations, we assume that the channel state information (CSI) is 
perfectly known within the CRNRF-EH. For simplicity, the 
complete network slot duration time,𝑇 is normalized to 1. Without 
loss of generality, it is assumed that the AWGN power at all 𝑆𝑈𝑠 is 
the same, i:e 𝑁଴ଵ =  𝑁଴ଶ = 𝑁଴ଷ = ⋯ = 𝑁଴௜ = ⋯ =  𝑁଴ெିଵ = 𝑁଴ெ.  
While for practical network implementations, the energy 
harvested stored in supercapacitors to power data transmission, 
however the harvested energy will not always necessarily be 
totally used up all the time, meanwhile such restriction or non-
total harvested energy consumption condition can be relaxed for 
network simulation for modelling for simplicity, hence in this 
work it is assumed that harvested energy is completely used up 
after data transmission. Therefore, there is no residual or left over 
energy at the beginning of a new energy harvesting time slot.  
Thus, the harvested energy during the harvesting time slot is 
consumed before the beginning of another harvesting time slot. 

 

 

In the CRN-RF-EH, the energy consumption of the 𝑈ௌ்
௜  node is 

highly constrained or limited to its harvested energy, 𝐸௜ . thus this 
results in the well-known energy causality constraint of all RR-EH 
networks. In underlay spectrum access architecture, the cognitive 
transmitter node 𝑈ௌ்

௜  causes a certain level of interference to the 
PR in the primary user network. To protect PT from possible 
harmful interference from 𝑈ௌ்

௜  in the CRN-RF-EH, the minimum 
acceptable interference threshold by the primary user network 
must be enforced on the CRN-RF-EH. Thus, the allocated 
transmission power of 𝑈ௌ்

௜  in the CRN-RF-EH networks need not 
exceed the networks’ set maximum threshold of the CRN-RF-EH. 
Similarly, the transmission time of the 𝑈ௌ்

௜  must not exceed the 
total communication slot duration of the CRN-RF-EH. These 
constraints are vital for the CRN-RF-EH and are mathematically 
formulated below. 
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4.3.1 Primary network interference constraint, C1 

 For the nodes in CRN-RF-EH to carry out communication on 
the primary user’s network spectrum, the communication 
activities of the primary users must not be noticeably hampered 
by the interference from the transmission activities of 𝑈ௌ்

௜  in CRN-
RF-EH. The primary user network will not tolerate any harmful 
interference above its maximum acceptable interference 
threshold,𝐼௉, from the CRNRF-EH nodes. Therefore, the total 𝑆𝑈′𝑠 
interference from each communication duration slot of CRN-RF-
EH must not exceed the maximum acceptable interference 
threshold,𝐼௉, of the primary receiver. This is model in Equation 7: 

 

𝑔ௌ்,௉ோ 
௜ 𝑃ௌ்

௜  ≤ 𝐼௉, ∀𝑖                                                    (7) 

4.3.2 Transmission power constraint, C2 

 Another way the interference from CRN-RF-EH transmitting 
nodes is controlled is by enforcing a transmission power constraint 
on each 𝑈ௌ்

௜ . This helps limit the amount of interference power that 
gets to the 𝑃𝑅 of the primary user network from the CRN-RF-EH 
transmitting nodes. 

Secondly, the transmitting 𝑈ௌ்
௜  should not be able to transmit 

at infinite power, no matter how short its allocated transmission 
time is. Thus, the transmission power assigned to each 𝑈ௌ்

௜  needs 
to be capped to the network acceptable maximum, 𝑃௠௔௫. This 
process is captured and addressed with the Constraint 𝐶2 as 
defined in Equation 8, as; 

 
𝑃ௌ்

௜  ≤ 𝑃௠௔௫ , ∀𝑖                                                   (8) 
 

4.3.3 Energy causality constraint, C3 

The energy consumed by 𝑈ௌ்
௜  is solely limited by how much of 

harvested energy 𝐸௜, that it can harvest during its energy 
harvesting time slot, 𝑇 − 𝑡௜. Thus 𝑈ௌ்

௜  energy consumption during 
its transmission time slot 𝑡௜ can not exceed the amount of energy 
harvested during its energy harvesting time slot 𝑇 − 𝑡௜. Hence, this 
is an energy causality constraint. The energy causality constraint 
is expressed in Equation 9 and Equation 10, as: 

 
𝑃ௌ்

௜  ≤ 𝑛௜(𝑇 − 𝑡௜) 𝑒௉்,ௌ்
௜ 𝑃௉், ∀𝑖,                                          (9) 

  
𝑃ௌ்

௜ 𝑡௜  ≤ 𝐸௜ , ∀𝑖.                                                                        (10) 
 

4.3.4 Transmission time constraint, C4 

In the CRN-RF-EH framework, the 𝑈ௌ்
௜ , if the 𝑈ௌ்

௜  used all the 
entire communication slot duration 𝑇, to harvest energy, that is 
𝑇 − 𝑡௜ = 𝑇, (𝑡௜ = 0), thus 𝑈ௌ்

௜  will not be able to transmit its data or 
information, hence 𝑡௜ ≠ 0. Also, given that the CRN-RF-EH 
implements the harvestand-then-transmit protocol, thus 𝑈ௌ்

௜  can 
not harvest energy using its entire slot duration. Similarly, it is not 
possible to allocate the entire 𝑇 to 𝑡௜ as its transmission time, as 
there will be no prior harvested energy for the 𝑈ௌ்

௜  to transmit 
with. Hence must be 𝑡௜ ≠ 𝑇. These conditions are implemented by 
Constraint 𝐶4 as depicted in Equation 11; 

 
0 < 𝑡௜ < 𝑇, ∀𝑖.                                                           (11) 

 

 In energy harvesting network, harvested energy utilization 
and resource allocation starvation or unfairness are of great 
concern. Hence, the goal here is to optimize the worst-case user 
capacity of the CRN-RF-EH. 

 

In wireless communication and network resource allocation,  

fairness metrics play a crucial role in balancing efficiency and user 
satisfaction.  Among the widely used fairness metrics are 
proportional fairness, geometric mean fairness and max-min 
fairness. While max-min fairness   ensures that the most 
disadvantaged users or weaker users get priority before increasing 
others resource allocation, in contrast proportional fairness and 
geometric mean fairness can lead to resource starvation for weaker 
users, thus only max-min fairness metric in considered in this 
paper.  We propose a resource allocation fairness scheme, using 
the max-min maximization framework while jointly optimizing 
the transmission and transmit power of the 𝑈ௌ்

௜ . The throughput 
capacity 𝑅௜൫𝑡௜ , 𝑃ௌ்

௜ ൯ of the underlay CRN-RF-EH is dependent on 
transmission time, 𝒕 and transmission power, P vectors. The 
allocated transmission time and power are defined as:𝑡 =
[𝑡ଵ, 𝑡ଶ, 𝑡ଷ, ⋯ , 𝑡௜ , ⋯ , 𝑡ெିଵ, 𝑡ெ] and 𝑃 =
ൣ𝑃ௌ்

ଵ , 𝑃ௌ்
ଶ , 𝑃ௌ்

ଷ , ⋯ 𝑃ௌ்
௜ , ⋯ , 𝑃ௌ்

ெିଵ, 𝑃ௌ்
ெ  ൧, respectively. The optimization 

problem OP1 to maximize 𝑅௜൫𝑡௜ , 𝑃ௌ்
௜ ൯ is formulated in Equation 12 

as; 
                                𝑂𝑃1:  𝑚𝑎𝑥

௧,௉
𝑚𝑖𝑛
௜∈ெ

𝑅௜൫𝑡௜ , 𝑃ௌ்
௜ ൯   

 
      𝑠. 𝑡.: 
 

𝐶1: 𝑔ௌ்,௉ோ
௜ 𝑃ௌ்

௜ ≤  𝐼௣, ∀𝑖 
 

𝐶2:   𝑃ௌ்
௜ ≤  𝑃௠௔௫ , ∀𝑖 

 
𝐶3:   𝑃ௌ்

௜ 𝑡௜ ≤  𝐸௜ , ∀𝑖 
 

𝐶4:  0 < 𝑡௜ < 𝑇, ∀𝑖 
 

            𝐶5:   𝑃ௌ்
௜ , 𝑡௜ > 0, ∀𝑖                                   (12) 

 
The Constraint 𝐶5 ensures that 𝑡௜ and 𝑃ௌ்

௜  are non-negative 
values. Given that a convex optimization problem formation is 
much efficient and easy to solve with various optimization 
techniques, however, the formulated optimization problem 𝑂𝑃1 is 
a non-convex optimization problem. This is due to the max-min 
formulation and coupling of the optimization variables in the 
objective function and the constraint 𝐶3. Thus the 𝑂𝑃1 need to be 
transformed to its equivalent convex optimization problem such 
that a global optimal solution can be obtained. 

 

Since 𝑅௜(𝑡, 𝑃)is an ascending function with regard to both 𝑡 
and, 𝑃 and is a multivariate objective function, problem 𝑂𝑃1 can 
be restated into its epigraph form. To do this we introduce a slack 
variable Ω, where Ω ≜ min

௜∈ெ
𝑅௜൫𝑡௜ , 𝑃ௌ்

௜ ൯. This transforms the 
multivariate objective function into a linear function. Therefore, 
since linear functions are convex, thus the objective function is a 
convex objective function (Boyd, S., & Vandenberghe, L. 2004). 
Thus, 𝑂𝑃2 is formulated in Equation 13, as: 

 
                                            𝑂𝑃2:  𝑚𝑎𝑥

௧,௉,ఆ
𝛺   

      𝑠. 𝑡.: 
𝐶1ᇱ: 𝛺 − 𝑅௜൫𝑡௜ , 𝑃ௌ்

௜ ൯ ≤  0, ∀𝑖 
 

𝐶2′: 𝑔ௌ்,௉ோ
௜ 𝑃ௌ்

௜ ≤  𝐼௣, ∀𝑖 
 

𝐶3′:   𝑃ௌ்
௜ ≤  𝑃௠௔௫ , ∀𝑖 

 
𝐶4′:   𝑃ௌ்

௜ 𝑡௜ ≤  𝐸௜ , ∀𝑖 
 

𝐶5′:  0 < 𝑡௜ < 𝑇, ∀𝑖 
 

𝐶6′:   𝑃ௌ்
௜ , 𝑡௜ > 0, ∀𝑖                                     (13) 

Note that the objective function of the previous problem, 𝑂𝑃1 
is equivalent to maximizing over the slack variable Ω of 𝑂𝑃2, such 
that min

௜∈ெ
𝑅௜൫𝑡௜ , 𝑃ௌ்

௜ ൯ ≥ Ω, ∀𝑖 . Consequently, all user achievable rates 
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have a lower bound represented by the slack variable Ω . In this 
case, Ω represents the lowest user rate utility that can be achieved 
for every user, and it is optimized to provide every user, 
irrespective of their channel or cell-edge user conditions, a 

consistently good utility level of service.  
Notice that there is non-convexity of both constraints 𝐶1′ and 

𝐶4′ arises from the coupled variables, i.e.,𝑡௜ and 𝑃ௌ்
௜ . To address 

this challenge of transforming 𝑂𝑃2 to a standard convex 
optimization problem 𝑂𝑃3, we introduce the use of an 
intermediate variable𝜒. Let 𝜒௜ = 𝑃ௌ்

௜ 𝑡௜ , 𝑖 = 1,2,3, ⋯ , 𝑀 − 1, 𝑀. Thus, 
𝑂𝑃3 is formulated in Equation 14, as: 

 

                                                          𝑂𝑃3:  𝑚𝑎𝑥
௧,ఞ೔,ఆ

𝛺   

      𝑠. 𝑡.: 

𝐶1ᇱᇱ: 𝛺 − 𝑅௜ ൬𝑡௜ ,
𝜒௜

𝑡௜
൰ ≤  0, ∀𝑖 

𝐶2′′: 𝜒௜𝑔ௌ்,௉ோ
௜ ≤  𝐼௣𝑡௜ , ∀𝑖 

𝐶3ᇱᇱ:  𝜒௜ ≤  𝑃௠௔௫ 𝑡௜ , ∀𝑖 

𝐶4′′:   𝜒௜ ≤  𝐸௜ , ∀𝑖 

𝐶5′′:  0 < 𝑡௜ < 𝑇, ∀𝑖 

             𝐶6′′:   𝜒௜ , 𝑡௜ > 0, ∀𝑖                 (14) 

 
where 𝜒 = [𝜒ଵ, 𝜒ଶ, 𝜒ଷ, ⋯ , 𝜒௜ , ⋯ , 𝜒ெିଵ, 𝜒ெ]is the vector of the new 
optimization variable. Proposition 1: The optimization problem 
𝑂𝑃3 is convex.  For proof of convexity of 𝑂𝑃3  see Appendix A.   

Since the optimization problem, 𝑂𝑃3 is a standard convex 
optimization problem w.r.t energy and time allocations, the 𝑂𝑃3 
can be solved by standard convex optimization techniques. 
Recently, several efficient solvers have been used to solve standard 
convex optimization formulation for resource allocation problems 
in energy-harvesting cognitive radio networks (Wang et al., 2020). 
In science and engineering, optimization software solvers are 
potent toolkits that are used to simulate and solve optimization 
programming problems (Koch et al., 2022). Several widely used 
commercially licensed optimization software solvers are the 
CPLEX (Lahsen-Cherif et al., 2021), CONOPT (Nojavan et al., 
2023), YALMIP (Li et al., 2021) and GUROBI (Liu et al., 2024); 
they can be found in the literature. Various wireless 
communication networks’ optimization problem formulations 
have been solved using optimization software solvers (Lahsen-
Cherif et al., 2021). The CONOPT solver is a robust that can solve 
large real-time network systems.  The performance CONOPT 
solver on large network system is evaluated on IEEE 33-bus and 
IEEE 69-bus test systems for conducting load flow calculations in 
radial distribution networks.   The CONOPT solver outputs are 
accurate and fast in their convergence to global solutions in 
standard test systems (Rakočević et al., 2024). The CONOPT solver 
is used to solve the optimization problem 𝑂𝑃3. The CONOPT is an 
optimization solver tool that is based on the generalized reduced-
gradient (GRG) algorithm for solving large-scale non-linear 
optimization problems (Andrei, 2017). The CONOPT assumes all 
variables are continuous and all constraints are smooth with 
smooth first derivatives.  The CONOPT solver does not handle 
integer or binary decision variables well, making it unsuitable for 
mixed-integer nonlinear programming (MINLP) without 
additional techniques. CONOPT solver requires that a feasible 
starting point be provide while poor initial guesses or starting 
point can lead to slow convergence, while if variables and 
constraints are not properly scaled, CONOPT solver may 
experience numerical instabilities.  It is available as a Fortran 
Subroutine library. The CONOPT is implemented in 
MATLAB/TOMLAB software environment. The GRG algorithm is 
given in Algorithm 1. 

 
 
 

Algorithm 1: The generalized reduced gradient (GRG) Algorithm. 
Given the objective function,𝑓(𝑥) equality constraints𝑔௜(𝑥), and 
inequality constraintsℎ௝(𝑥), 𝑥 is the set of decision variables and 
𝑋 is the feasible domain, where x is in the feasible domain or 
𝑥 ∈ 𝑋. 

Step 1: Initialize and start the algorithm: 
Choose an initial feasible point for the set of the decision 

variables as 𝑥(0), where 𝑥(0) satisfies the equality constraints, 
𝑔௜(𝑥) = 0 and the inequality constraints, ℎ௝(𝑥) ≤ 0 . 

Initialize termination parameter, 𝜑 (→ 0ା)  
Initialize the iteration counter 𝑚 = 0 
 Step 2: Relax the inequality constraints and define the 

basic and non-basis variables: 
Relax the inequality constraints by introducing slack 

variables 
 Partition the set of variables 𝑥 into basic variable 𝑥஻ and 

non-basic variables 𝑥ே . 
Step 3: Compute the Jacobian: 
Compute the Jacobian of 𝑔(𝑥) with respect to the basic 

variables, 𝑥஻: 

𝐽஻ =
డ௚(௫)

డ௫ಳ
. 

 Compute the Jacobian of g(x) with respect to the non-basis 
variables, 𝑥ே: 

𝐽ே =
డ௚(௫)

డ௫ಿ
. 

Step 4: Compute the reduced gradient: 
Calculate the reduce gradient of the objective function: 

∇𝑓(𝑥) = ൤
𝜕𝑓

𝑥ଵ
,
𝜕𝑓

𝑥ଶ
,
𝜕𝑓

𝑥ଷ
, … ,

𝜕𝑓

𝑥௞
 ൨.  

 Partition the reduced gradient of the objective function 
into the basic and non-basic reduced objective functions, as: 

∇𝑓(𝑥) = ൬
∇𝑓஻(𝑥)

∇𝑓ே(𝑥)
൰ 

Recomputed the reduced gradient of the objective function 
as: 

∇𝑓ோ(𝑥) = ∇𝑓ே(𝑥) − ∇𝑓஻(𝑥)(𝐽஻
ିଵ𝐽ே) 

Step 5: Compute the 2-norm and check for termination: 
If ‖∇𝑓ோ(𝑥(𝑚))‖ < 𝜑 
Then 𝑥௢௣௧௜௠௨௠ = 𝑥(𝑚) 
Else update the search direction vector 𝑑 for the non-basic 

and basic variables, as: 
𝑑ே = −∇𝑓ோ(𝑥) 

and 
𝑑஻ = −(𝐽஻

ିଵ𝐽ே)𝑑ே 
Step 6: Determine the step size, 𝛼(௠): 
Perform a line search to find the step size𝛼(௠), which 

sufficiently reduces the objective function, such that 𝑓൫𝑥(𝑚) +
𝛼(௠) 𝑑൯ is minimum, while maintaining the feasibility with 
respect to the constraints. 

Update variables 
𝑥஻(𝑚 + 1) = 𝑥஻(𝑚) + 𝛼(௠) 𝑑஻ 
𝑥ே(𝑚 + 1) = 𝑥ே(𝑚) + 𝛼(௠) 𝑑ே 

Step 7: Update iteration counter: 
Set 𝑥(𝑚 + 1) = (𝑥஻(𝑚 + 1), 𝑥ே(𝑚 + 1)) 
Increment the iteration counter as, 𝑚 = 𝑚 + 1; 
 if ‖∇𝑓ோ(𝑥(𝑚 + 1)‖ <  𝜑 
 input 𝑥௢௣௧௜௠௨௠ = 𝑥(𝑚 + 1) 
Else  
Go to Step 3: 
Step 8: End algorithm. 

 

In this section, the JOTPA resource allocation scheme 
performance evaluations for CRN-RF-EH worst-case user capacity 
maximization are investigated through numerical simulations and 
the results are presented. Since the goal of this paper is to explore 
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the worst-case user capacity maximization for the CRN-RF-EH, 
w.r.t. the 𝑆𝑈𝑠ᇱ energy causality constraints, primary user 
interference threshold limit, communication slot duration, and 
maximum transmission power threshold, the CONOPT solver is 
employed to solve the 𝑂𝑃3. The CONOPT is a robust commercial 
optimization tool that can solve highly dense nonlinear 
optimization problems efficiently. In our simulations, a CRN-RF-
EH which consists of three 𝑆𝑈 users, (𝑀 = 3) in the 𝑆𝑈 network 
and one 𝑃𝑇 and 𝑃𝑅 in the 𝑃𝑈 network are considered. The 𝑆𝑈 
network exists in a square area bounded by(0,0) ,(0,0) and (10,10). 
The 𝑈ௌ்

௜  is fixed at (1,9), (9,2) and (8,8). The 𝑈ௌோ
௜  is randomly 

distributed. The average distance of the primary network’s 
transmitter and receiver from the 𝑆𝑈′𝑠 networks are set to 15m 
and 20m, respectively. Except otherwise stated, other CRN-RF-EH 
parameters are assigned as follows. The duration of slot 𝑇 𝑇 is 
normalized to 1 unit. The maximum interference threshold for the 
primary receiver is 𝐼௣ = 1𝑊. The 𝑃𝑇 constant transmission power 
𝑃௉் = 15𝑊, energy harvesting efficiency 𝜀௜ = 0.6 and Maximum 
transmitting power threshold for secondary user, 𝑃௠௔௫ = 3𝑊.  

The channel power gains are modeled as 𝑎௉்,ௌ்
௜ = 𝑎௉்,ௌ்

௜ᇲ
𝑑௉்,ௌ்

ିఈ , 
𝑏௉்,ௌோ

௜ = 𝑏௉்,ௌோ
௜ᇲ

𝑑௉்,ௌோ
ିఈ , ℎௌ்,ௌோ

௜ = ℎௌ்,ௌோ
௜ᇲ

𝑑ௌ்,ௌோ
ିఈ , and 𝑔ௌ்,௉ோ

௜ =
𝑔ௌ்,௉ோ

௜ᇲ
𝑑ௌ்,௉ோ

ିఈ . The Rayleigh fading terms are denoted as;𝑎௉்,ௌ்
௜ᇲ , 

𝑏௉்,ௌோ
௜ᇲ , ℎௌ்,ௌோ

௜ᇲ  and 𝑔ௌ்,௉ோ
௜ᇲ . The Rayleigh fading terms are 

independent exponential random variables. The distances between 
the𝑃𝑇 and 𝑆𝑇, and between 𝑃𝑇 and 𝑆𝑅, and between 𝑆𝑇 and 𝑆𝑅S 
and between 𝑆𝑇 and 𝑃𝑅 are denoted by 𝑑௉்,ௌ், 𝑑௉்,ௌோ, 𝑑ௌ்,ௌோ, and 
𝑑ௌ்,௉ோ , respectively. 𝛼 denotes the path-loss exponent and is set to 
3.7, for urban cellular environment. All the channel links 
experience a combination of Rayleigh fading and path loss. The 
distance-dependent path loss is considered as the large-scale 
fading. The Rayleigh fading is considered to be the small-scale 
fading (Kaur et al., 2017). The bandwidth, 𝐵 is set to 1MHz. 
Numerical simulations are repeated over 1, 000 different random 
fading channel realizations and the results are averaged. The 
proposed JOTPA scheme is compared with the BRTOPA scheme. 
The BRTOPA allocates transmission time based on a biased-
randomized Gaussian probability distribution. 

 

Figure. 4 presents the investigation of the response of worst-
case user capacity to relative variation of slot duration in CRN-RF-
EH. Figure. 4 shows the worst-case user capacity performance in 
the CRN-RF-EN across the resource allocation schemes for 
increasing slot duration simulations. Generally, it is observed that 
in the worst-case user capacity improves when the slot duration is 
increased for the investigated resource allocation schemes.  

 
Figure. 4: Effect of relative slot duration length 

 
The fact behind this observation is that in the CRN-RF-EH, a 

lengthened slot duration provides more time for both the energy 
harvesting phase and signal transmission phase for the 𝑆𝑈𝑠 to 
harvest energy from the primary user network and transmit their 
data, respectively. However, JOTPA outperformed the BROTPA 
scheme at any given slot duration. In Figure. 4, the performance 

results indicate that the JOTPA scheme over BROTPA is 
significantly more improved at relatively higher slot duration than 
lower slot duration. The JOPPA leverages the relatively increased 
slot duration in the CRN-RF-EH to produce better-optimized 
network performance solutions. The JOTPA scheme offers an 
average performance gain of about 28.2% over the BRTOPA 
scheme. 

 

In the CRN-RF-EH, Figure.5 demonstrates the impact of the 
variation of the 𝑃𝑈 transmitter distance to the 𝑆𝑈 networks on the 
worst-case user capacity performance. As seen from Figure.5, 
generally for the presented resource allocation schemes, the 
throughput capacity of the CRN-RF-EN distances inversely with 
increasing average distance of the primary user’s transmitter 
distance for the 𝑆𝑈′𝑠 network. This is due to the established 
experimental evidence that the received signal strength (RSS) at 
the receiver decreases inversely as the distance between the 
transmitter and the receiver increases. Hence in the energy 
harvesting phase, the amount of harvested energy by the RF 
energy harvesting cognitive nodes and subsequently the 
transmitting signal power available to  

 

Figure. 5: Effect of average 𝑃𝑈 transmitter distance on 𝑆𝑈 worst-case user 
capacity 

 
The cognitive radio node in the transmission phase will 

inversely decrease. However, in comparison, it is evident that 
when considering the throughput attained using the max-min 
fairness criterion, the suggested JOTPA system consistently 
performs better than the BRTOPA scheme. The JOTPA offers more 
flexibility in resource utilization by jointly optimizing the 
transmission time and transmission power to adapt optimally with 
the increasing average 𝑃𝑈′𝑠 transmitter distance. In Figure.5, 
JOPTA achieves an average performance gain of about 50.8% over 
the BRTOPA scheme. 

 

The performance study of the impact of varying 𝑆𝑈𝑠′ 
transmission power threshold 𝑃௠௔௫ on the worst-case user capacity 
in CRN-RFEH network power consumption of the CCRRN system 
is presented in Figure.6. The result depicts that as the 𝑆𝑈𝑠 
transmission power threshold rises, the worst-case user capacity 
performance for both schemes is generally improved. The worst-
case user capacity performance slope is steeper at lower 𝑆𝑈 
transmission power thresholds, while its performance slope is less 
steep at higher 𝑆𝑈 transmission power thresholds. These 
observations follow the logarithm law, supported by the Shannon 
channel capacity law. Furthermore, for a higher 𝑆𝑈 transmission 
power threshold, as the 𝑆𝑈 increases its transmit power under a 
set 𝑃𝑈 network interference temperature limit in the underlay 
spectrum access mode, the 𝑆𝑈 interference received at the 
𝑃𝑈 networks will start to increase. If this situation is not checked 
by the 𝑆𝑈𝑠′ networks, this can create a possible scenario where 
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𝑆𝑈′𝑠 network violates the interference threshold of the primary 
network. Thus to avoid this scenario, the CRN-RF-EH network 
starts capping the 𝑆𝑈𝑠′ transmission power, consequently, as a 
result, the worst-case user capacity tends towards being 
compressed or saturated by the CRN-RF-EH. The performance 
evaluation result shows in Figure.6 depicts that JOPTA delivers an 
average performance enhancement of 45.6% above BROTPA. 

 

 

Figure. 6: Effect of 𝑆𝑈 transmission power threshold 
 

 

In Figure.7, the performance study of the response of worst-
case user capacity to path loss exponent variation. As the path loss 
exponent increases, the worst-case user capacity decreases, this 
can be due to absorption and reflection losses due to urban 
buildings and structures, mountains etc., in the radio propagation 
environment. As the path loss exponent increases, the attenuation 
of transmitted power from the primary user transmitter towards 
the CRN-RF-EH increases. This leads to low harvested RF energy 
at the source node in the CRN-RF-EH.  

 
 

 

Figure.7: Effect of path loss exponent 
 
Subsequently, in the CRN-RF-EH, the transmission of the 

source node to the destination node in an increasing path loss 
exponent environment result in a low received signal-to-noise 
ratio (SNR) at the destination node. Thus, the throughput capacity 
at the destination node decreases. This supports the Shannon 
channel capacity theory. Thus Figure 7 illustrates how the path 
loss exponent variable indirectly affects the worst-case user 
capacity. The result shows that at a lower path loss exponent 
value, the JOTPA scheme performed significantly better than the 
BRTOPA scheme, however, the performance advantage of JOTPA 
scheme over the BRTOPA scheme starts to drop or decline as 

approaches that of BRTOPA as the path loss exponent increases. In 
all, a 13.0% average performance improvement of the JOTPA 
scheme over the BRTOPA is observed in Figure.7. 

 

The CRN-RF-EH performance study for the effect of varying 
primary user transmission power on the worst-case user capacity 
is presented in Figure.8. From the result, as the primary user 
increases its transmission power, the worst-case user capacity 
simultaneously increases. This indicates that the higher the 
primary user transmission power, the more energy that can be 
harvested by the 𝑆𝑈𝑠. This indicates that as the transmission power 
of 𝑃𝑈 in the primary user network increases, the energy harvested 
by the 𝑆𝑈𝑠 in secondary user networks, in the energy harvesting 
epoch also increases. With more energy available for the 𝑆𝑈𝑠, 
there is a higher power capacity for achieving increased data 
transmission rates during the 𝑆𝑈𝑠′ data transmission phase. 
Consequently, this leads to an improved worst-case user capacity 
in the CRN-RF-EH. The simulation results demonstrate that the 
JOTPA resource allocation scheme performs better than the 
baseline resource scheme of BRTOPA. The comparative result in 
Figure.8 indicates that the worst-case user capacity performance 
gap between JOTPA and BRTOPA widens as the primary user 
transmission power increases. The performance of JOTPA over 
BRTOPA increases at higher primary user transmission power 
levels. On the average, JOTPA provides a performance 
improvement of 47.9% over BRTOPA. 

 

 

Figure. 8: Effect of primary user transmission power 
 

 

In this paper, we have studied the network resource allocation 
fairness optimization problem for CRN-RF-EH to ensure that the 
throughput is fairly allocated to each user in the CRN-RF-EH 
system. To achieve this goal, we formulated a max-min resource 
allocation optimization problem. The formulated resource 
allocation problem is observed to be a non-convex optimization 
problem. We transformed the formulated non-convex problem into 
a resource allocation convex optimization problem by introducing 
a series of auxiliary variables. We proved that the transformed 
resource allocation optimization problem is concave. We 
maximize the CRN-RF-EH worst-case user throughput capacity 
through the proposed JOTPA scheme under the prevailing CRN-
RF-EH constraints. Our analysis showed that when the CRN-RF-
EH’s 𝑈ௌ்

௜  uses up all of the harvested RF energy, the worst-case 
user throughput capacity maximization is reached. Through 
simulation results, we have shown that our proposed solution 
always achieves the superior performance compared with the 
conventional BRTOPA scheme. The analysis into the network 
system radio resource allocation fairness performances of the CRN-
RF-EH in this paper is based on the assumption of perfect CSI 
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among all users, consequently, it will be interesting for future 
work direction to characterize the effect of the uncertainty due to 
imperfect CSI among all users in the CRN-RF-EH. While our 
proposed scheme guaranteed fairness to worst-case users in the 
network, however our proposed scheme cannot guarantee fairness 
for worst-case users in the networks with prioritized users or   
minimum rate requirement users.   
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Since the objective function of OP3 is an epigraph linear 
function or an affine function in Ω  hence the objective function is 
a linear function  ℝ௡ of the form 

𝑓(𝛺) = 𝑎்𝛺 + 𝑏, 
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Where 𝑛 is the dimension of the input vector, 𝑎 is a constant 
vector, Ω is the variable vector and 𝑏 𝑖𝑠 a constant scalar. _ 

The Hessian matrix of 𝑓(Ω) is the matrix of second-order 
partial derivatives: 

H = ∇ଶ𝑓(Ω) 
 
Since 𝑓(Ω) is linear, its first derivative is constant: 

𝛻𝑓(𝛺) = 𝑎 

While the second derivative is: 

𝛻ଶ𝑓(𝛺) = 0 

This means the Hessian matrix of OP3 is a zero matrix.  A 
function is convex if its Hessian matrix is positive semidefinite, 

meaning all its eigenvalues are non-negative. Similarly, a function 
is concave if its Hessian matrix is negative semidefinite, meaning 
all its eigenvalues are non-positive. Hence the Hessian matrix of 
OP3 both positive semidefinite and negative semidefinite. 

A linear or affine function is both convex and concave because 
its Hessian is a zero matrix.  For the constraint set of OP3, the 
Constraint 𝐶1ᇱᇱ is a Logarithmic function bounded by a linear 
function, Ω. Logarithmic and linear functions are both convex sets.  
In addition, the Constraints 𝐶2ᇱᇱ − 𝐶6ᇱᇱ are all linear convex 
constraints set.  Therefore, OP3 is a standard convex optimization 
problem that maximizes a concave function over convex 
constraints set. 
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