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ABSTRACT 

In this paper, we report the analyses of a single element antenna 
and array antenna using rooftop function as a basis and testing 
functions to model the current distribution on the antennas. The 
Method of Moments (MoM) was used to obtain matrix equation from 
the Electric Field Integral Equation (EFIE) from which the solution to 
the current distribution was obtained and validate using the 
Numerical Electromagnetic Code (NEC) software. The input 
impedance for dipole antenna was obtained and compared against 
measured results and other electromagnetic computational technique 
for a dipole antenna. A minimum convergence error percent of 0.03% 
was observed at the use of 30 rooftop functions. The single element 
wire antenna input impedance obtained produced better result and 
converged faster than the use of pulse testing technique. The antenna 
array characteristics simulated using the results obtained from a single 
dipole element, achieved the end-fire, broad-side and electronic beam 
steering (scanning) characteristics of linear array antenna. 
 
Keywords: Method of Moment, Rooftop Function, Antenna Systems Analysis, 
Computational Electromagnetics.  

1. INTRODUCTION 

 The earliest known rigorous approach to the analysis of wire 
antenna was by Pocklington in 1897. The integral equation he 
formulated was named after him. This Integral equation is an integro-
differential type of the Electric Field Integral Equation (EFIE), with 
unknown current distribution along the cylindrical wire. It could not 
be solved numerically, such that for a long time its value was purely 
academic. 

A different integral equation for modelling thin wire structures 
was put forward in 1938 (Hallen, 1938).This was derived from EFIE for 
thin cylindrical wires. Nomura and Hatta (1952) and Storm (1953) 
proposed the method of moment for the analysis of cylindrical antenna 
by means of the Hallen’s Equation, the solution was very restricted, 
because the classical computational means available then were not 
suitable for numerical solution of integral equations. The Pocklington 
analysis is difficult to implement but gives a more accurate result 
compared to Hallen analysis for wire antenna. 

The first numerical solution of wire–structure antenna was due 
to (Richmond, 1965). He applied the sub-domain rectangular basis 
function and entire–domain basis function to solve the Pocklington 
equation for cylindrical wire structures using the point matching 

procedure. Harrington, in his classical work in 1967, introduced the 
method of moment (MoM) for solving electromagnetic–field problems 
in general and the thin wire–antenna problem in particular. In 
tackling the wire antenna problems, he used both the point matching 
and Galerkin procedures for the first time to obtain its solutions 
(Harrington, 1967).  Many of the works which followed thereafter 
were based on the MoM. 

Most antenna problems are usually modelled using EFIE, which 
are derived from the Maxwell Equations (Wandzura et al., 1992). 
Various numerical /computer algorithms have been developed to solve 
the EFIE for various practical antennas. The most accurate algorithm 
for solving the EFIE is the MoM but this is usually complex and 
difficult to implement. The computational accuracy of results 
obtained, using Method of Moment are largely affected by the choice 
of basis functions in the modelling of the current distribution on the 
antenna system (Kolundzija et al., 1998), (Canning, 1993). 

Therefore, it is important to look for an optimum basis function 
that will produce a fast converging result, easy to implement and that 
will give accurate results. The Numerical Electromagnetic Code 
(NEC) is the most powerful commercial code and was introduced by 
(Burke and Paggio, 1981). In this work, rooftop function is used as the 
basis function and testing function to model the unknown current 
distribution on the antenna. The result obtained is compared with the 
results obtained using NEC. The modelled current distribution on the 
antenna is then used to determine the input impedance, radiation 
pattern of single element wire antenna and to predict the beam 
scanning characteristics of the phase array. The input impedance 
results for single element are compared against experimental 
measurements and results obtained using other electromagnetic 
computational techniques 

2. THE ELECTRIC FIELD INTEGRAL EQUATION  

An antenna carrying current density ( )J r
→ →

 has a radiated 

electric field given as  E r k E r j J r J rjωμ
ωε

→ → → → → → → →
∇ + = − ∇ ∇• 

 
 

2 2 1
( ) ( ) ( ') ( ')

              (1) 

where E r→ →

( ) is the radiated E-field, k is the  wave number and J r→ →

( ') is the source current density. Maxwell’s equations are linear, 

hence we consider ( ')J r→ →

 as a superposition of point sources 

distributed over some volume. Therefore, if we know the response of a 
point source or the Green’s function of a point source we can solve the 
original problem by integrating this response over the volume. This 
idea is made use of to convert (1) into an Electric field integral 
equation 
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where  ( , ')G r r→ →

 is the Green’s function, r→  is the field 

observation point , 'r→  is current source point and 

'

( , ')
4 '

jk r reG r r r rπ

→ →
− −

→ →

→ →
=

−
    (3) 

However, in many cases of practical interest, it may be difficult 
or impossible to directly solve this equation for the fields. A remedy, 
an auxiliary vector potential that can be used to solve for the radiated 
fields needs to be derived. The vector potential is obtained via integral 
equation of the currents, and the radiated fields are obtained directly 
from the vector potential. Vector potential formulation is used 
extensively in the analysis of antenna radiation and scattering 
problems, and used frequently in this work. The radiated E-field in 

terms of auxiliary vector potential ( )A r→ →
 is given by  

( ) ( ) ( ( ))
jE r j A r A rω

ωμε

→ → → → → →
= − − ∇ ∇•  

 (4) 
where 

 
'

'

( ) ( ') '
4 '

jk r r
V eA r J r dVr rμ

π

→ →
− −

→ → → →

→ →
=

−
 .                  (5) 

 
2.1. Far Fields 

    When the observation point is located very far away from the 

source, 1>>kr , approximations can be made that greatly simplify 

the computation of the radiated field. In this case r→  and 'r r→ →
−  

are virtually parallel. Under this assumption, r  can reasonably be 
approximated as,   

, var

' , vari

r for amplitude iations
r

r r r forphase ations
→ ∧

= 
− •

                 (6) 

                                                                  
     It has been shown that the far-field component becomes a 

proportional to 
r
1

 
(Morita et al, 1990). The far electric field 

will therefore be computed as 

)()(
→→→→

−= rAjrE ω                                   (7) 

( ' )

'

( ') '
4

jk r r rvj J r e dVrωμ
π

∧→→ →
− − •=− 

          (8a) 

 

 

'

'

( ') '
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π
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•= − 

              (8b)

 

3. MODELLING TECHNIQUE 

For most problems of practical interest, the derived Integral 
Equation cannot be solved analytically, hence the application of 
computational methods to obtain the solution. The MoM is a 
technique used to convert the integral equation into a linear system 
that can be solved numerically using a digital computer. 

The Rooftop function is used as the basis function to model the 
expected behaviour of the unknown current throughout the problem 
domain. A rooftop function is defined as 
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 An inner product or moment between a basis function 

)'(
→
rf n  and a testing function )(

→
rfm  is defined as 

, ( ) ( ') 'm n m nf fm nf f f r f r d r d r→ → → →
  = • 

                    

(10) 

Requiring the inner product of each testing function with the 
residual function to be zero yields, 

  

1
, ( ) ,

N n m n mn a f L f f g
=

< > = < >
                            

(11) 

which produces a NN × matrix equation given by  

[Zmn][an] = [bm],                                            (12) 
with matrix elements 

 = )(, nmmn fLfz                                                   (13) 

and right-hand side vector elements 

= gfb mm ,  .                                                            (14) 

where ( ) gL ,• operator and forcing are function, respectively. 

     In the MoM, each Rooftop function interacts with all others 
by means of the Green’s function 

3.1. Thin Wire Approximation 

Consider the dipole antenna shown in Figure 1 to be a perfectly 

conducting thin wire with the length , 1=L m and radius, 5=a
mm operating at a wavelength of 1m and (i:e  a λ<< andL a>>

)a, oriented in 
∧
z -direction. An incident electric field ( )iE r→ →

 excites 

on this wire a surface current ( ')J r→ →

.Since the wire is very thin, and 

assuming that ( ')J r→ →

 can be written in terms of a 
∧
z -oriented 

filamentary current )'(
→
rIz as 
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      In cylindrical coordinates, the corresponding magnetic 
vector potential AZ in terms of the surface integral is written as  

 

 
Figure 1: Single Dipole Antenna 
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noting that ,' a=ρ  and that the source point is at the surface 

of the thin wire conductor, where a is the radius of the conductor. 
Therefore, 

.)'cos(2)'( 222 φφρρ −−++−= aazzr
                        

(17a) 

 
     If a is assumed to be very small, r  can be approximated as 

22)'( ρ+−= zzr                                                         (17b) 

hence, 

                                                                                                                                                                                                                                                    


−

−

=
2

2

'
4

)'(),(

L

L

krj

zz dz
r

ezIzA
π

μρ    .                                 (18) 

        The radiated field obtained from(4) is 

,
2

2

zz
s
z A

z
jAjE

∂
∂−−=

ωμε
ω               

(19)  
by enforcing the boundary condition of zero tangential electric 

field on the surface of the wire, 

.i
z

s
z EE −=                                            (20)   

    The thin wire EFIE in terms of the incident field i
zE is 

/2 2
2

2
/2

( ) ( ') '
4

L jkriz zL
j eE z I z k dzrzωε π

−

−

∂
= +

∂

 
 
 


 (21) 

Equation (21) is called Pocklington’s integral equation (Sadiku, 2001). 
 

3.2. Source Excitation Modelling 

The excitation source for the dipole antenna is modelled by a 
delta-gap source. The delta-gap source treats the feed as if the electric 

field impressed by the feed line exists only in the gap between the 
antenna terminals and is zero outside, that is, no fringing in the region 
of the feed, the current is of course displacement current, rather than 
conduction current; it is effectively the former which the MoM is 
approximating in the feed region, but it still needs a segment (even 
though it is fictitious) and its associated expansion function in order 
to do this (Davidson, 2005). The delta-gap source model assumes that 
the impressed electric field in the thin gap between the antenna 
terminals can be expressed as 

      

,
i oz zVE z→ ∧

=
Δ

    (22) 

where zΔ is the width of the gap, and oV  
is usually set to 

unity.  In the numerical simulation, this field exists inside one wire 
segment and is zero outside (Gibson, 2008). The resulting excitation 
vector will have nonzero elements only for basis functions defined 
within that segment. 

3.2. Linear Array antenna 

     A single element antenna is usually not enough to achieve 
some required technical specifications. That happens because its 
performances are limited. Usually the radiation pattern of a single 
element is relatively wide, and each provides low values of directivity 
(gain). When an antenna array has elements arranged in a straight 
line, it is referred to as a linear array. A uniform array consists of equi-
spaced elements, which are fed with current of equal magnitude and 
can have progressive phase-shift along the array. Figure 2 shows a 
uniform linear array of N elements equally spaced at distance d apart 
with identical amplitude excitation and has a progressive phase 
difference of β between the successive elements.  

     The radiated electric field of the linear array equals the 
product of the radiated electric field of single element antenna at the 
reference point and the array factor. The array factor (AF) is given by  

,
1

)cos)(1(
=

+−=
N

n

kdnjeAF βθ
                     (23) 

where k the wave number, d is  the element spacing, β is the 

phase shift and θ  is the angle of radiation.  
The linear array antenna is analysed using the radiated field 

from a single dipole antenna that serves as the reference element with 

the linear array factor )(AF . 

 
Figure 2: Linear Array  (witn N-elements) 

4. RESULTS AND DISCUSSIONS 

From equation (21), numerical computations for the input 
impedance matrix, which are generally complex Toeplitz Matrix, from 
which the current distribution, input impedance, and far field 
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radiation pattern are gotten for a radiating dipole antenna of signal 
frequency 300MHz, radiating in a free-space, are computed using 36, 
48 and 60 unknown basis rooftop functions. The current distribution 
results obtained for wire dipole analysis are shown in figure 3. The 
current distribution plots showed that the magnitude of current 
values at both ends of the dipole antenna decays to zero. This result 
supports the electromagnetics boundary conditions that exist 
between the antenna and dielectric air medium. The current 
distribution obtained showed that the position of current anti-node is 
located at the mid-section of the dipole antenna, which is practically 
the feed or excitation point. This distribution showed that current 
nodes exit at the tips or ends of the dipole antenna of length / 2λ
with the current Anti-node at its mid-section. Figure 4 shows that the 
current distribution result obtained compares well with that obtained 
using the NEC.  

The Figure 5 and 6 compared the input impedance obtained in 
this work to that of experimental measurement of 72.0 0j+  Ohms at 

resonance. The input impedance converges to the experimental value. 
The input impedance value for the dipole antenna improves as the 
number of roof top basis functions increases and the input impedance 
value converged approximately to 72.2 1.3j+  Ohms. The computed 

convergence percentage error is0.4% .  

 It is observed in this work that the real part of the input 
impedance converges better than the reactive part to the experimental 
value. 

Figure 7 and 8 compared the input resistance and input 
reactance obtained in this work to that of reported by Eric D. Caswell 
against the number of basis function used. Figures 7 and 8 showed 
that the input impedance obtained from this work converges faster 
than that obtained using sinusoidal basis functions and testing 
functions. The input impedance convergence result of 77 5j+ ohms 

was reported by Eric D. Caswell (Caswell, 1998), using sinusoidal 
basis functions and testing functions. A perfect resonant single dipole 
antenna has an input Impedance of experimental measurement value 
of 72.0 0j+  Ohms. This work shows improved results using rooftop 

basis functions and testing functions as compared to the use of 
sinusoidal basis functions and pulse testing functions. Figure 9 
showed the input resistance percent error convergence result. The 
result showed a minimum convergence error of approximately
0.03% , at the use of 30 rooftop functions. The percent error 

convergence eP  is computed using the formula 

100 %v ve vO TP T−= ×                                         (24) 

where vO  is the obtained value and vT  is the true value. 

    The far–field result obtained for a single element dipole 

antenna of length 0.5 λ  is presented in figure 10. The radiation pattern 
results for eight-element (N=8)\linear arrays are presented in figures 11 
and 12. Figures 11 and 12 show the results obtained for End-fire and 
Broadside configurations using eight single element dipole antennas, 
with inter-element spacing (d ) and phase shift ( β ) of0.25λ ,

090−  ,0.5λ  and 
00 , respectively. The results for phase/ 

(scanning) array through arbitrary desired angle of radiation ( 0θ ) of 

080 , 
060  and 

050  are presented in Figure 13, 14 and 15 respectively. 

5. CONCLUSIONS 

The EFIE equation for the analysis of wire antenna was 
implemented using MATLAB codes. The current distributions along 
the dipole antenna using rooftop functions compared well with NEC. 

The input impedance for dipole wire antenna obtained using 
rooftop functions as basis and test functions are more accurate and 
converged faster than the results obtained using sinusoidal basis 

functions and testing functions. The input impedance value for the 
dipole antenna improves as the number of roof top basis functions 
increases and the input impedance value converged approximately to 
72.2 1.3j+  Ohms. The computed convergence percentage error is

0.4% .  

    Far–Electric field (E-field) agrees with the E-field radiation 
pattern of a practical dipole antenna. The result obtained from single 
element dipole antenna, when applied to linear array dipole antenna, 
produced good results. 

 
Figure 3: Current distributions over wire length of 0.5 λ , using 36(0), 48([]) and 

60(X) rooftop basis Functions

 
Figure 4: Comparison of results from rooftop function and NEC for Current 

distribution for dipole wire antenna operating at 300MHz. 
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Figure 5: Comparison of results from rooftop function and experimental results for an 

input resistance of a dipole antenna at resonance  
 

 
Figure 6: Comparison of results from rooftop function and experimental results for an 

input reactance of a dipole antenna at resonance 
 

 
Figure 7: Comparison of results from rooftop function and sinusoidal function analysis 

for input resistance of a dipole antenna at 300Hz. 

 
Figure8: Comparison of results from rooftop function and sinusoidal function analysis 

for input reactance of a dipole antenna at 300Hz. 
 

 
 Figure 9: Comparison of input resistance percent error results for rooftop function and 

sinusoidal function for a dipole antenna at 300MHz. 

 

 
Figure 10: Far-Field radiation Pattern for single dipole wire antenna of length 0.5 λ , 

using 60 rooftop basis functions 
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Figure 11: Radiation pattern for End-fire linear array with 0N = 8, d = 0.25l, b = -90   

 
Figure 12:  Radiation Pattern for Broadside linear array with  0N = 8, d = 0.5l, b = 0   

 

 

Figure 13: Polar plot result for Phase array with N=8, d = 0.5l  and 0θ = 080  

 

 

Figure 14: Polar plot result for Phase array with N=8, d=0.5 λ  and 0θ = 060  

 

 

Figure 15: Polar plot result for Phase array with N=8, d = 0.5l and 0θ =
050  
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