Processing, Resistivity and Microstructure of Al-Kaolinite Clay-Based Cermet System

  • S.G. Ayodele Department of Physics University of Ilorin P.M.B. 1515, Ilorin. Nigeria
  • T. Akomolafe Department of Physics University of Ilorin P.M.B. 1515, Ilorin. Nigeria
Keywords: Annealing, Composite materials, Electrical conductivity, Electron microscopy, Resistors, Sintering

Abstract

Cermets have been fabricated from naturally occurring Al-clay based admixtures. The effect of processing parameters such as firing temperature, firing time and furnace atmosphere on the electrical conductivity and microstructure of the cermets were investigated. Our electrical measurements reveal that the electrical properties vary remarkably with the annealing schedule. The resistance decreases with increasing peak firing temperature TF, being very rapid at the early stage of firing, i.e between 300 oC and 700 oC. All the cermets have negative temperature coefficient of resistance (TCR) with the magnitude of the TCR dropping from 1220 ppm/oC at peak firing temperature TF of 200 oC to as low as 50 ppm/oC for TF =1000 oC. The range of the TCR obtained is comparable to that reported for some thermistors, varistors and other standard resistors. Observations of the microstructure by Scanning Electron Microscope (SEM) showed that increasing the peak firing temperature TF enhances sintering of the conducting grains. X-ray diffraction (XRD) analysis indicates kaolinite as the major mineral in the clay. An optimum peak firing temperature of 700 oC is recommended for these cermets based on the criteria of low resistivity, low bulk density and stable microstructure of the cermets.

Author Biographies

S.G. Ayodele, Department of Physics University of Ilorin P.M.B. 1515, Ilorin. Nigeria

Department of Physics
University of Ilorin
P.M.B. 1515, Ilorin. Nigeria

T. Akomolafe, Department of Physics University of Ilorin P.M.B. 1515, Ilorin. Nigeria

Department of Physics
University of Ilorin
P.M.B. 1515, Ilorin. Nigeria

References

Affronte, M. , Campani, M., Piccinini, S., Tamborin, M., Morten, B., Prudenziati M., and Laborde O., “Low temperature electronic transport in RuO2-Based cermet resistors”, Journal of Low Temperature Physics.109, 461,(1997).
Aghajamian, M.K.; Rocazella, M.A.; Burke, J.J. and Keek, S.D. “The fabrication of metal matrix composites by a pressureless infiltration technique”, J Mat. Sci, 26, (1991).Alessandrini A., Valdré G., Morten B., and Prudenziati M., “Electric force microscopy investigation of the microstructure of thick film resistors”, J. Appl. Phys., 92, 4705-4711 (2002).
Ayodele S.G. and . Akomolafe T “Dc Electrical properties and conduction mechanism of Al-clay based composite resistor” J Mat. Sci,40,6131-6138 (2005).
Bhattacharyya, S.K. Basu, S. Sadhan., K. De Pal A.K. and Chowdhury, S. “Effect of annealing on the electrical resistivity of conductive polyvinylchloride-copper composites”, J. Appl. Phys., 49, 3001-3003 (1978).
Benco L, Tunega D, Hafner J, Lischka H. “Upper limit of the O–H-O hydrogen bond: Ab initio study of the kaolinite structure”. J.Phys Chem B,105,10812–10817 (2001).
Biesterbos, J.W.M, “Structure and dc electrical properties of a Au-Rh-glass thick-film system”, J. Appl. Phys. 45, 153-160 (1974).
Burst .J.F., “The application of clay minerals”, Appl. Clay Sci.5, 421-443 (1991).
Chung, D. D. L., “Materials for electromagnetic interference shielding”, Journal of materials engineering and performance, 9, 350-354 (2000).
Crosbie, G.M. Johnson, F.M. and Trela, W. “Processing factor dependence of resistivity parameters of ruthenate-based thick film resistors with low temperature coefficients” J. Appl. Phys., 84, 2913-2919 (1998).
Clyne, T.W.; Metallic Composite Materials in: CAHN, R.W. and HAAS(eds) Physical Metallurgy, Elsevier, 2568-2625 (1996).
Diletta S, Balbo A, Melandri C, Pezzotti G., “Microstructure and properties of an electroconductive SiC-based composite”, Journal of Materials Science, 42, 5570-5575, (2007).
Ettmayer,P. Kolaska, H., Lengauer f. W. and Dreyert, K., Ti(C,N), “Cermets - Metallurgy and Properties”, Int. J. Refract. Met. Hard Mater. 13, 343-350 (1995).
Evans, U.R. (1968): “The Corrosion and Oxidation of Metals”, First Supplementary Volume, St. Martins Publishers Inc. New York.
Ganapathi, L. G. Subbanna, N. Nanjundaswamy, K. S. . Rao, C. N. R “Small nickel metal particles in Ni---Al2O3 metal-ceramic composites”, Journal of Solid State Chemistry, 66, 376-378, (1987).
George, I. and Rack, H.J; “Powder Processing of Metal Matrix Composites” In:Clyne,T.W.(ed.) Comprehensive Composite Materials, l3: Metal Matrix Composites, Elsevier, 679-700 (2000).
Goodman, G, Encyclopedia of Material Science and Engineering, Vol. 6, Pergamom Press, Oxford, 4213-4219 (1977).
Jardiel T., Caballero A.C. and Villegas M., “Electrical properties in WO3 doped Bi4Ti3O12 materials”, Journal of the European Ceramic Society, 27, 4115-4119 (2007).
Kim T.Y, “Achievement of zero temperature coefficient of resistance with RuOx thin film resistors”, Appl. Phys. Lett., 70, 209-211 (1997).
Kim T.H., Principles of Soil Chemistry, 225-228 (1998).
Köbel, S. Plüschke, J. Vogt, U. and Graule, T. J. “MoSi2–Al2O3 electroconductive ceramic composites”, Ceramics International, 30,2105-2110, (2004).
Lai, C.-h. Hsu,C.F., Chin Y.C., and Chengder C., “Effect of composition and microstructure on temperature coefficient of resistance of polycrystalline La1–xCaxMnO3 thin films”, J. Vac. Sci. Technol. A, 19, 1186-1190 (2001).
Morten, B., Masoerot, A. , Prudenziati, M. and Manfredinit, T., “Evolution of ruthenate-based thick film cermet resistors”, J. Phys. D Appl. Phys. 27, 2227-2235 (1994).
Murray, H.H., “Traditional and new applications for kaolin, smectite, and palygorskite: a general overview”, Applied Clay Science, 17, 207-221 (2000).
Pike G.E. and Seager C.H. “ Electrical properties and conduction mechanisms of Ru-based thick-film (cermet) resistors”. J. Appl. Phys. 48, 5152-5169 (1977).
Ping, Y. Rodriguez, M.A. Kutola, P. Miera, B.K. Dimos, D., “Processing, microstructure, and electric properties of buried resistors in low-temperature co-fired ceramics” , J. Appl. Phys. 89, 4175-4182 (2001).
Prewo, K.M., J Brennan .J., and Layden,S.K., “Fibre reinforced glasses and glass-ceramics for high-performance applications”. Am. Ceram. Soc. Bull. 65,305–313 (1986).
Prudenziati, M. “Handbook of Sensors and Actuators,Elsevier Amsterdam”,189-190 (1994).
Prudenziati, M., Sirotti, F., Sacchi, M., Morten, B., Tombesi, A., and Akomolafe, T., “Size Effects in Ruthenium-Based Thick-Film Resistors: Rutile VS. Pyrochlore-Based Resistors”, Active and Passive Elect. Comp., 14, 163-173 (1991).
Runyan J. and R. Gerhardt, A., "Electrical Properties of Boron Nitride Matrix Composites: I, Analysis of McLachlan Equation and Modeling of the Conductivity of Boron Nitride–Boron Carbide and Boron Nitride–Silicon Carbide Composites”, J. Am. Ceram. Soc., 84 ,1490–1496 (2001).
Sundeen J. E. and Buchanan R. C., “Thermal sensor properties of cermet resistor films on silicon substrates”, Sensors and Actuators A, 90, 118-124 (2001)
Suryanarayana, C. and Norton M.G., „X-Ray Diffraction: A Practical Approach‟ Plenum Publishing Corporation, New York (1998).
You I.-K., Byun J.-D., Kim Y.-H., “The microstructure and electrical conductivity of WO3-doped SrTiO3 ceramics”,Solid state Ionics, 83, 159-165, (1996).
Zongrong L. and Chung D.D.L., “Effect of firing atmosphere on air-fireable glass-free electrically conductive thick film”, Journal of Electronic Materials, 34, 287-293 (2005).
Published
2008-05-01
How to Cite
Ayodele, S., & Akomolafe, T. (2008). Processing, Resistivity and Microstructure of Al-Kaolinite Clay-Based Cermet System. Ife Journal of Technology, 17(1), 23-29. Retrieved from https://ijt.oauife.edu.ng/index.php/ijt/article/view/9